Which of the following  statements is $NOT$  logically equivalent to $\left( {p \to  \sim p} \right) \to \left( {p \to q} \right)$?

  • A

    $\left( {p \to p} \right) \to \left( {p \to  \sim p} \right)$

  • B

    $q \to \left( {p \to q} \right)$

  • C

    $\left( {q \to  \sim p} \right) \to \left( {q \to p} \right)$

  • D

    none of these

Similar Questions

If $p$ and $q$ are simple propositions, then $p \Rightarrow q$ is false when

$\left( {p \wedge  \sim q \wedge  \sim r} \right) \vee \left( { \sim p \wedge q \wedge  \sim r} \right) \vee \left( { \sim p \wedge  \sim q \wedge r} \right)$ is equivalent to-

Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is

  • [JEE MAIN 2017]

Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard

The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to

  • [JEE MAIN 2023]